1. Introduction

- Fibered confocal fluorescence microscopy (FCFM) has recently gained prominence in investigating the presence of bacteria in the distal lung [1].
- A bacterium’s diameter is usually smaller than the width of the fibre core as well as the gap between two consecutive fiber cores.
- A bacterium appears as a high intensity dot in the image frame and, tends to ‘blink’ on and off in consecutive image frames.

2. Problem Formulation

Observation model:

\[y = x + r + e \]

- \(y \in \mathbb{R}^N \): observed samples.
- \(x \in \mathbb{R}^N \): actual intensity values.
- \(r \in \mathbb{R}^N \): outliers (\(r = z \odot t \)), where \(z \in \{0, 1\}^N \) is the label vector, and \(t \) is the outlier amplitude.
- \(e \in \mathbb{R}^N \): Gaussian noise \(N(\sigma_N, \sigma_e^2 I_N) \)

3. Proposed Bayesian Model

Likelihood:

- The function of the unknown parameters \((x, z, \sigma^2)\) given the observed data \(y\).

Parameter prior distributions:

- Intensity field \(x\): Gaussian Markov random fields prior.
- Noise variance \(\sigma^2\): Non-informative Jeffreys’ prior.
- Outlier amplitude \(t\): Conjugate Gaussian prior.
- Label vector \(z\): Bernoulli Markov random fields prior.
- Conjugate priors for the hyperparameters associated with the parameters mentioned above (regularization parameter \(\gamma^2\), outlier mean \(\mu\), and outlier variance \(\sigma^2\)).

Joint posterior distribution:

- Bayes’ theorem to compute the joint posterior distribution.

Bayesian inference:

- Gibbs sampler to generate random variables according to the conditional distributions of the parameters and their associated hyperparameters [2].
- Final label vector \(z\) is estimated by marginal maximum a posteriori (MAP) estimation.

4. Simulations Using Synthetic Data

- Denoising of a subsampled version of the standard image of Lena.
- A subsampled image is created by considering the sampling pattern of an actual FCFM.

Evaluation criterions:

- Denoising \(\rightarrow\) root mean square error (RMSE).
- Detection \(\rightarrow\) receiver operating characteristics (ROC) graph.

5. Simulations Using Real Data

- Images of ex vivo Sheep lungs instilled with bacteria.
- Eight videos with 130 total frames.
- A trained clinician marked the co-ordinates of phenomena in the images that he believes to be bacteria.

6. Conclusions and Future Work

Conclusions:

- A Bayesian approach for bacteria detection in FCFM lung tissue images was proposed.
- Good performance on synthetic and real datasets.

Ongoing and future work:

- Validation on an increasing bacteria concentration dataset.
- Bacteria tracking by taking advantage of the temporal information in the datasets.

Acknowledgement

We would like to thank Engineering and Physical Sciences Research Council (EPSRC, United Kingdom) Interdisciplinary Research Collaboration grant EP/K03197X/1 for funding this work.

References